This textbook is intended for a course in algebraic topology at the beginning graduate level. The main topics covered are the classification of compact 2-manifolds, the fundamental group, covering spaces, singular homology theory, and singular cohomology theory. These topics are developed systematically, avoiding all unnecessary

Algebraic methods in markov chains; Ratio theorems of transition probabilities and applications; Sums of independent random variables as a markov chain; Order statistics, poisson processes, and applications; Continuous time markov chains; Diffusion processes; Compouding stochastic processes; Fluctuation theory of partial sums of independent identically distributed